MTH 301: Group Theory Homework II

(Due 05/09)

- 1. Let G be a finite group.
 - (a) Show that if $g^m = 1$, for some $g \in G$, then $o(g) \mid m$.
 - (b) Show that if |G| is a prime number, then G has to be cyclic.
- 2. Let G be a group.
 - (a) Show that if G has no nontrivial subgroups, then G has to be of finite prime order, and hence cyclic.
 - (b) Show that if $(ab)^2 = a^2b^2$ for every $a, b \in G$, then G is a abelian.
- 3. Let G be a group and $H \leq G$. Then show that the following sets form subgroups of G.
 - (a) The set $gHg^{-1} = \{ghg^{-1} \mid h \in H\}.$
 - (b) The set $Z(G) = \{g \in G \mid gx = xg, \forall x \in G\}$ called the *center of G*.
 - (c) The set $C(H) = \{g \in G \mid gh = hg, \forall h \in H\}$ called the *centralizer of H in G*.
 - (d) The set $N(H) = \{g \in G \mid gHg^{-1} = H\}$ called the normalizer of H in G.
- 4. Let G be a cyclic group.
 - (a) Show that if $H \leq G$, then H has to be cyclic.
 - (b) If |G| = n, then how many generators can G have.
- 5. Let $U_n = \{ [g] \in \mathbb{Z}_n \mid \gcd(g, n) = 1 \}.$
 - (a) If \cdot denotes multiplication modulo n, show that (U_n, \cdot) is a group.
 - (b) Show that U_9 is cyclic, while U_{20} is not a cyclic group.
- 6. Let G be a group and $H \leq G$. Then the number of distinct left (or right) cosets of H in G is called the *index of* H in G, denoted by |G:H|.
 - (a) Show that if G is finite, then |G:H| = |G|/|H|.
 - (b) Let $G = \mathbb{Z}$ and $H = m\mathbb{Z}$, for some $m \in \mathbb{Z}$. Then compute G/H and |G:H|.